Chiral Koszul duality
We extend the theory of chiral and factorization algebras, developed for curves by Beilinson and Drinfeld (American Mathematical Society Colloquium Publications, 51. American Mathematical Society, Providence, RI, 2004 ), to higher-dimensional varieties. This extension entails the development of the...
Gespeichert in:
Veröffentlicht in: | Selecta mathematica (Basel, Switzerland) Switzerland), 2012-03, Vol.18 (1), p.27-87 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We extend the theory of chiral and factorization algebras, developed for curves by Beilinson and Drinfeld (American Mathematical Society Colloquium Publications, 51. American Mathematical Society, Providence, RI,
2004
), to higher-dimensional varieties. This extension entails the development of the homotopy theory of chiral and factorization structures, in a sense analogous to Quillen’s homotopy theory of differential graded Lie algebras. We prove the equivalence of higher-dimensional chiral and factorization algebras by embedding factorization algebras into a larger category of chiral commutative coalgebras, then realizing this interrelation as a chiral form of Koszul duality. We apply these techniques to rederive some fundamental results of Beilinson and Drinfeld (American Mathematical Society Colloquium Publications, 51. American Mathematical Society, Providence, RI,
2004
) on chiral enveloping algebras of
-Lie algebras. |
---|---|
ISSN: | 1022-1824 1420-9020 |
DOI: | 10.1007/s00029-011-0065-z |