Lagrangian Floer theory on compact toric manifolds II: bulk deformations
This is a continuation of part I in the series of the papers on Lagrangian Floer theory on toric manifolds. Using the deformations of Floer cohomology by the ambient cycles, which we call bulk deformations , we find a continuum of non-displaceable Lagrangian fibers on some compact toric manifolds. W...
Gespeichert in:
Veröffentlicht in: | Selecta mathematica (Basel, Switzerland) Switzerland), 2011-09, Vol.17 (3), p.609-711 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This is a continuation of part I in the series of the papers on Lagrangian Floer theory on toric manifolds. Using the deformations of Floer cohomology by the ambient cycles, which we call
bulk deformations
, we find a continuum of non-displaceable Lagrangian fibers on some compact toric manifolds. We also provide a method of finding all fibers with non-vanishing Floer cohomology with bulk deformations in arbitrary compact toric manifolds, which we call
bulk-balanced
Lagrangian fibers. |
---|---|
ISSN: | 1022-1824 1420-9020 |
DOI: | 10.1007/s00029-011-0057-z |