Lagrangian Floer theory on compact toric manifolds II: bulk deformations

This is a continuation of part I in the series of the papers on Lagrangian Floer theory on toric manifolds. Using the deformations of Floer cohomology by the ambient cycles, which we call bulk deformations , we find a continuum of non-displaceable Lagrangian fibers on some compact toric manifolds. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Selecta mathematica (Basel, Switzerland) Switzerland), 2011-09, Vol.17 (3), p.609-711
Hauptverfasser: Fukaya, Kenji, Oh, Yong-Geun, Ohta, Hiroshi, Ono, Kaoru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This is a continuation of part I in the series of the papers on Lagrangian Floer theory on toric manifolds. Using the deformations of Floer cohomology by the ambient cycles, which we call bulk deformations , we find a continuum of non-displaceable Lagrangian fibers on some compact toric manifolds. We also provide a method of finding all fibers with non-vanishing Floer cohomology with bulk deformations in arbitrary compact toric manifolds, which we call bulk-balanced Lagrangian fibers.
ISSN:1022-1824
1420-9020
DOI:10.1007/s00029-011-0057-z