Differential forms on arithmetic jet spaces
We study derivations and differential forms on the arithmetic jet spaces of smooth schemes, relative to several primes. As applications, we give a new interpretation of arithmetic Laplacians, and we discuss the de Rham cohomology of some specific arithmetic jet spaces, especially arithmetic jet spac...
Gespeichert in:
Veröffentlicht in: | Selecta mathematica (Basel, Switzerland) Switzerland), 2011-06, Vol.17 (2), p.301-335 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study derivations and differential forms on the arithmetic jet spaces of smooth schemes, relative to several primes. As applications, we give a new interpretation of arithmetic Laplacians, and we discuss the de Rham cohomology of some specific arithmetic jet spaces, especially arithmetic jet spaces of linear tori, elliptic curves, and Kummer surfaces. |
---|---|
ISSN: | 1022-1824 1420-9020 |
DOI: | 10.1007/s00029-010-0054-7 |