Steady states in a structured epidemic model with Wentzell boundary condition

We introduce a non-linear structured population model with diffusion in the state space. Individuals are structured with respect to a continuous variable which represents a pathogen load. The class of uninfected individuals constitutes a special compartment that carries mass; hence the model is equi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of evolution equations 2012-09, Vol.12 (3), p.495-512
Hauptverfasser: Calsina, Àngel, Farkas, József Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a non-linear structured population model with diffusion in the state space. Individuals are structured with respect to a continuous variable which represents a pathogen load. The class of uninfected individuals constitutes a special compartment that carries mass; hence the model is equipped with generalized Wentzell (or dynamic) boundary conditions. Our model is intended to describe the spread of infection of a vertically transmitted disease, for e.g., Wolbachia in a mosquito population. Therefore, the (infinite dimensional) non-linearity arises in the recruitment term. First, we establish global existence of solutions and the principle of linearised stability for our model. Then, in our main result, we formulate simple conditions which guarantee the existence of non-trivial steady states of the model. Our method utilises an operator theoretic framework combined with a fixed-point approach. Finally in the last section, we establish a sufficient condition for the local asymptotic stability of the positive steady state.
ISSN:1424-3199
1424-3202
DOI:10.1007/s00028-012-0142-6