Parabolic boundary value problems connected with Newton’s polygon and some problems of crystallization

. A new class of boundary value problems for parabolic operators is introduced which is based on the Newton polygon method. We show unique solvability and a priori estimates in corresponding L 2 -Sobolev spaces. As an application, we discuss some linearized free boundary problems arising in crystall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of evolution equations 2008-08, Vol.8 (3), p.523-556
Hauptverfasser: Denk, R., Volevich, L.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:. A new class of boundary value problems for parabolic operators is introduced which is based on the Newton polygon method. We show unique solvability and a priori estimates in corresponding L 2 -Sobolev spaces. As an application, we discuss some linearized free boundary problems arising in crystallization theory which do not satisfy the classical parabolicity condition. It is shown that these belong to the new class of parabolic boundary value problems, and two-sided estimates for their solutions are obtained.
ISSN:1424-3199
1424-3202
DOI:10.1007/s00028-008-0392-5