Classifying Abelian Groups Through Acyclic Matchings
The inquiry into identifying sets of monomials that can be eliminated from a generic homogeneous polynomial via a linear change of coordinates was initiated by E. K. Wakeford. This linear algebra problem prompted C. K. Fan and J. Losonczy to introduce the notion of acyclic matchings in the additive...
Gespeichert in:
Veröffentlicht in: | Annals of combinatorics 2024-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The inquiry into identifying sets of monomials that can be eliminated from a generic homogeneous polynomial via a linear change of coordinates was initiated by E. K. Wakeford. This linear algebra problem prompted C. K. Fan and J. Losonczy to introduce the notion of acyclic matchings in the additive group
$$\mathbb {Z}^n$$
Z
n
, subsequently extended to abelian groups by the latter author. Alon, Fan, Kleitman, and Losonczy established the acyclic matching property for
$$\mathbb {Z}^n$$
Z
n
. This note aims to classify all abelian groups with respect to the acyclic matching property. |
---|---|
ISSN: | 0218-0006 0219-3094 |
DOI: | 10.1007/s00026-024-00719-w |