A Poset Fiber Theorem for Doubly Cohen-Macaulay Posets and Its Applications

This paper studies topological properties of the lattices of non-crossing partitions of types A and B and of the poset of injective words. Specifically, it is shown that after the removal of the bottom and top elements (if existent) these posets are doubly Cohen-Macaulay. This strengthens the well-k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of combinatorics 2013-11, Vol.17 (4), p.711-731
Hauptverfasser: Kallipoliti, Myrto, Kubitzke, Martina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies topological properties of the lattices of non-crossing partitions of types A and B and of the poset of injective words. Specifically, it is shown that after the removal of the bottom and top elements (if existent) these posets are doubly Cohen-Macaulay. This strengthens the well-known facts that these posets are Cohen-Macaulay. Our results rely on a new poset fiber theorem which turns out to be a useful tool to prove double (homotopy) Cohen- Macaulayness of a poset. Applications to complexes of injective words are also included.
ISSN:0218-0006
0219-3094
DOI:10.1007/s00026-013-0203-8