The Flag Polynomial of the Minkowski Sum of Simplices
For a polytope we define the flag polynomial , a polynomial in commuting variables related to the well-known flag vector and describe how to express the flag polynomial of the Minkowski sum of k standard simplices in a direct and canonical way in terms of the k-th master polytope P(k) where . The fl...
Gespeichert in:
Veröffentlicht in: | Annals of combinatorics 2013-09, Vol.17 (3), p.401-426 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a polytope we define the
flag polynomial
, a polynomial in commuting variables related to the well-known flag vector and describe how to express the flag polynomial of the Minkowski sum of
k
standard simplices in a direct and canonical way in terms of the
k-th master polytope P(k)
where
. The flag polynomial facilitates many direct computations. To demonstrate this we provide two examples; we first derive a formula for the
f
-polynomial and the maximum number of
d
-dimensional faces of the Minkowski sum of two simplices. We then compute the maximum discrepancy between the number of (0,
d
)-chains of faces of a Minkowski sum of two simplices and the number of such chains of faces of a simple polytope of the same dimension and on the same number of vertices. |
---|---|
ISSN: | 0218-0006 0219-3094 |
DOI: | 10.1007/s00026-013-0189-2 |