The Flag Polynomial of the Minkowski Sum of Simplices

For a polytope we define the flag polynomial , a polynomial in commuting variables related to the well-known flag vector and describe how to express the flag polynomial of the Minkowski sum of k standard simplices in a direct and canonical way in terms of the k-th master polytope P(k) where . The fl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of combinatorics 2013-09, Vol.17 (3), p.401-426
1. Verfasser: Agnarsson, Geir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a polytope we define the flag polynomial , a polynomial in commuting variables related to the well-known flag vector and describe how to express the flag polynomial of the Minkowski sum of k standard simplices in a direct and canonical way in terms of the k-th master polytope P(k) where . The flag polynomial facilitates many direct computations. To demonstrate this we provide two examples; we first derive a formula for the f -polynomial and the maximum number of d -dimensional faces of the Minkowski sum of two simplices. We then compute the maximum discrepancy between the number of (0, d )-chains of faces of a Minkowski sum of two simplices and the number of such chains of faces of a simple polytope of the same dimension and on the same number of vertices.
ISSN:0218-0006
0219-3094
DOI:10.1007/s00026-013-0189-2