Extension Theorem for Simultaneous q-Difference Equations and Some Its Consequences
Given a set T ⊂ ( 0 , + ∞ ) , intervals I ⊂ ( 0 , + ∞ ) and J ⊂ R , as well as functions g t : I × J → J with t ’s running through the set T ∗ : = T ∪ { t - 1 : t ∈ T } ∪ { 1 } we study the simultaneous q -difference equations φ ( t x ) = g t x , φ ( x ) , t ∈ T ∗ , postulated for x ∈ I ∩ t - 1 I ;...
Gespeichert in:
Veröffentlicht in: | Resultate der Mathematik 2024-11, Vol.79 (7), Article 262 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a set
T
⊂
(
0
,
+
∞
)
, intervals
I
⊂
(
0
,
+
∞
)
and
J
⊂
R
, as well as functions
g
t
:
I
×
J
→
J
with
t
’s running through the set
T
∗
:
=
T
∪
{
t
-
1
:
t
∈
T
}
∪
{
1
}
we study the simultaneous
q
-difference equations
φ
(
t
x
)
=
g
t
x
,
φ
(
x
)
,
t
∈
T
∗
,
postulated for
x
∈
I
∩
t
-
1
I
; here the unknown function
φ
is assumed to map
I
into
J
. We prove an Extension theorem stating that if a solution
φ
is continuous [analytic] on a nontrivial subinterval of
I
, then it is continuous [analytic] provided
g
t
,
t
∈
T
∗
, are continuous [analytic]. The crucial assumption of the Extension theorem is formulated with the help of the so-called limit ratio
R
T
which is a uniquely determined number from
[
1
,
+
∞
]
, characterising some density property of the set
T
∗
. As an application of the Extension theorem we find the form of all continuous on a subinterval of
I
solutions
φ
:
I
→
R
of the simultaneous equations
φ
(
t
x
)
=
φ
(
x
)
+
c
(
t
)
x
p
,
t
∈
T
,
where
c
:
T
→
R
is an arbitrary function,
p
is a given real number and
sup
I
>
R
T
inf
I
. |
---|---|
ISSN: | 1422-6383 1420-9012 |
DOI: | 10.1007/s00025-024-02287-0 |