Homology and Twisted C∗-Algebras for Self-similar Actions and Zappa–Szép Products

We study the categorical homology of Zappa–Szép products of small categories, which include all self-similar actions. We prove that the categorical homology coincides with the homology of a double complex, and so can be computed via a spectral sequence involving homology groups of the constituent ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Resultate der Mathematik 2025-02, Vol.80 (1), Article 9
Hauptverfasser: Mundey, Alexander, Sims, Aidan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the categorical homology of Zappa–Szép products of small categories, which include all self-similar actions. We prove that the categorical homology coincides with the homology of a double complex, and so can be computed via a spectral sequence involving homology groups of the constituent categories. We give explicit formulae for the isomorphisms involved, and compute the homology of a class of examples that generalise odometers. We define the C ∗ -algebras of self-similar groupoid actions on k -graphs twisted by 2-cocycles arising from this homology theory, and prove some fundamental results about their structure.
ISSN:1422-6383
1420-9012
DOI:10.1007/s00025-024-02264-7