Convergence in Law of Iterates of Weakly Contractive in Mean Random-Valued Functions

We investigate the asymptotic behaviour of the sequence of forward type iterations of a given random-valued vector function on the state space being a separable and complete metric space. Assuming non-linear contraction in mean we prove that the considered sequence converges weakly to a random varia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Resultate der Mathematik 2024-03, Vol.79 (2), Article 69
Hauptverfasser: Baron, Karol, Kapica, Rafał, Morawiec, Janusz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the asymptotic behaviour of the sequence of forward type iterations of a given random-valued vector function on the state space being a separable and complete metric space. Assuming non-linear contraction in mean we prove that the considered sequence converges weakly to a random variable with a finite first moment and independent of the initial state. Moreover, we show that the speed of this convergence does not have to be geometric. We also present examples illustrating the result obtained.
ISSN:1422-6383
1420-9012
DOI:10.1007/s00025-023-02093-0