Spinor Representation in Isotropic 3-Space via Laguerre Geometry
We give a detailed description of the geometry of isotropic space, in parallel to those of Euclidean space within the realm of Laguerre geometry. After developing basic surface theory in isotropic space, we define spin transformations, directly leading to the spinor representation of conformal surfa...
Gespeichert in:
Veröffentlicht in: | Resultate der Mathematik 2024-02, Vol.79 (1), Article 8 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a detailed description of the geometry of isotropic space, in parallel to those of Euclidean space within the realm of Laguerre geometry. After developing basic surface theory in isotropic space, we define spin transformations, directly leading to the spinor representation of conformal surfaces in isotropic space. As an application, we obtain the Weierstrass-type representation for zero mean curvature surfaces, and the Kenmotsu-type representation for constant mean curvature surfaces, allowing us to construct many explicit examples. |
---|---|
ISSN: | 1422-6383 1420-9012 |
DOI: | 10.1007/s00025-023-02031-0 |