Spinor Representation in Isotropic 3-Space via Laguerre Geometry

We give a detailed description of the geometry of isotropic space, in parallel to those of Euclidean space within the realm of Laguerre geometry. After developing basic surface theory in isotropic space, we define spin transformations, directly leading to the spinor representation of conformal surfa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Resultate der Mathematik 2024-02, Vol.79 (1), Article 8
Hauptverfasser: Cho, Joseph, Lee, Dami, Lee, Wonjoo, Yang, Seong-Deog
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a detailed description of the geometry of isotropic space, in parallel to those of Euclidean space within the realm of Laguerre geometry. After developing basic surface theory in isotropic space, we define spin transformations, directly leading to the spinor representation of conformal surfaces in isotropic space. As an application, we obtain the Weierstrass-type representation for zero mean curvature surfaces, and the Kenmotsu-type representation for constant mean curvature surfaces, allowing us to construct many explicit examples.
ISSN:1422-6383
1420-9012
DOI:10.1007/s00025-023-02031-0