The Global Classical Solution and Asymptotic Behavior of the Cauchy Problem for Hyperbolic Monge-Ampère Equation

This paper is concerned with the hyperbolic partial differential equations of Monge-Ampère type with two independent variables. When the coefficients do not depend on the unknown function and its derivatives, we can show that the hyperbolic Monge-Ampère equation admits a global classical solution by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Resultate der Mathematik 2024-02, Vol.79 (1), Article 12
Hauptverfasser: Jiang, Qinfeng, Wei, Changhua, Xing, Tiantian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with the hyperbolic partial differential equations of Monge-Ampère type with two independent variables. When the coefficients do not depend on the unknown function and its derivatives, we can show that the hyperbolic Monge-Ampère equation admits a global classical solution by the energy method under some decay and smallness assumptions on the coefficients. Furthermore, we can show that the solution converges to a solution of the linearized system.
ISSN:1422-6383
1420-9012
DOI:10.1007/s00025-023-02028-9