The Global Classical Solution and Asymptotic Behavior of the Cauchy Problem for Hyperbolic Monge-Ampère Equation
This paper is concerned with the hyperbolic partial differential equations of Monge-Ampère type with two independent variables. When the coefficients do not depend on the unknown function and its derivatives, we can show that the hyperbolic Monge-Ampère equation admits a global classical solution by...
Gespeichert in:
Veröffentlicht in: | Resultate der Mathematik 2024-02, Vol.79 (1), Article 12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with the hyperbolic partial differential equations of Monge-Ampère type with two independent variables. When the coefficients do not depend on the unknown function and its derivatives, we can show that the hyperbolic Monge-Ampère equation admits a global classical solution by the energy method under some decay and smallness assumptions on the coefficients. Furthermore, we can show that the solution converges to a solution of the linearized system. |
---|---|
ISSN: | 1422-6383 1420-9012 |
DOI: | 10.1007/s00025-023-02028-9 |