Biharmonic Homogeneous Polynomial Maps Between Spheres

In this paper we first prove a characterization formula for biharmonic maps in Euclidean spheres and, as an application, we construct a family of biharmonic maps from a flat 2-dimensional torus T into the 3-dimensional unit Euclidean sphere S 3 . Then, for the special case of maps between spheres wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Resultate der Mathematik 2023-08, Vol.78 (4), Article 159
Hauptverfasser: Ambrosie, Rareş, Oniciuc, Cezar, Ou, Ye-Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we first prove a characterization formula for biharmonic maps in Euclidean spheres and, as an application, we construct a family of biharmonic maps from a flat 2-dimensional torus T into the 3-dimensional unit Euclidean sphere S 3 . Then, for the special case of maps between spheres whose components are given by homogeneous polynomials of the same degree, we find a more specific form for their bitension field. Further, we apply this formula to the case when the degree is 2, and we obtain the classification of all proper biharmonic quadratic forms from S 1 to S n , n ≥ 2 , from S m to S 2 , m ≥ 2 , and from S m to S 3 , m ≥ 2 .
ISSN:1422-6383
1420-9012
DOI:10.1007/s00025-023-01935-1