On the Convexity and Concavity of Generalized Complete Elliptic Integral of the First Kind

In this paper, we study the convexity (concavity) of the function x ↦ K a ( x ) - log 1 + c / 1 - x on (0, 1) for a ∈ ( 0 , 1 / 2 ] and c ∈ ( 0 , ∞ ) , where K a ( r ) is the generalized complete elliptic integral of the first kind. This work is an extension of Yang and Tian (Appl Anal Discrete Math...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Resultate der Mathematik 2022-12, Vol.77 (6), Article 215
Hauptverfasser: Chen, Ya-jun, Zhao, Tie-hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the convexity (concavity) of the function x ↦ K a ( x ) - log 1 + c / 1 - x on (0, 1) for a ∈ ( 0 , 1 / 2 ] and c ∈ ( 0 , ∞ ) , where K a ( r ) is the generalized complete elliptic integral of the first kind. This work is an extension of Yang and Tian (Appl Anal Discrete Math 13:240–260, 2019), and also gives a refinement of inequality (Yang and Tian 2019, 0.27) as an application.
ISSN:1422-6383
1420-9012
DOI:10.1007/s00025-022-01755-9