Inner Superderivation of n-Isoclinism Lie Superalgebras

In this paper, we consider any two ideals I and J of a finite-dimensional Lie superalgera G . Then we define the set Sder J I ( G ) , which contains the set of all superderivations of G which take J to zero and whose images are contained in I and the set Sder c n ( G ) , which contains the set of al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Resultate der Mathematik 2022-06, Vol.77 (3), Article 113
Hauptverfasser: Khuntia, Tofan Kumar, Padhan, Rudra Narayan, Pati, K. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider any two ideals I and J of a finite-dimensional Lie superalgera G . Then we define the set Sder J I ( G ) , which contains the set of all superderivations of G which take J to zero and whose images are contained in I and the set Sder c n ( G ) , which contains the set of all superderivations δ of G such that δ ( g ) ∈ [ g , G n ] for all g ∈ G . In this article, we have shown that if ( φ , θ ) is an n -isoclinism between two finite-dimensional Lie superalgebras G and H , then there exists an isomorphism from Sder Z n ( G ) G n + 1 ( G ) to Sder Z n ( H ) H n + 1 ( H ) . Also, we prove the necessary and sufficient conditions under which Sder c n ( G ) is isomorphic to certain special subsuperalgebras of Sder ( G ) .
ISSN:1422-6383
1420-9012
DOI:10.1007/s00025-022-01643-2