Upper Bounds for the First Non-zero Steklov Eigenvalue via Anisotropic Mean Curvatures

In this article , we study the eigenvalue problem of the following operator d i v A ∇ f = 0 in M ∂ f ∂ v = p f on ∂ M where M is a compact Riemannian manifold with compact, connected, oriented boundary ∂ M , A denotes a smooth symmetric, positive definite (1,1)-tensor on M . We prove an Reilly-type...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Resultate der Mathematik 2022-02, Vol.77 (1), Article 6
Hauptverfasser: Chen, Qun, Shi, Jianghai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article , we study the eigenvalue problem of the following operator d i v A ∇ f = 0 in M ∂ f ∂ v = p f on ∂ M where M is a compact Riemannian manifold with compact, connected, oriented boundary ∂ M , A denotes a smooth symmetric, positive definite (1,1)-tensor on M . We prove an Reilly-type upper bound for the first non-zero eigenvalue p 1 of this problem via the higher order anisotropic mean curvatures of the boundary ∂ M in R n + 1 . Then, we also prove some pinching theorems for p 1 . In particular, we give some applications of these results to steklov eigenvalue problem.
ISSN:1422-6383
1420-9012
DOI:10.1007/s00025-021-01544-w