Upper Bounds for the First Non-zero Steklov Eigenvalue via Anisotropic Mean Curvatures
In this article , we study the eigenvalue problem of the following operator d i v A ∇ f = 0 in M ∂ f ∂ v = p f on ∂ M where M is a compact Riemannian manifold with compact, connected, oriented boundary ∂ M , A denotes a smooth symmetric, positive definite (1,1)-tensor on M . We prove an Reilly-type...
Gespeichert in:
Veröffentlicht in: | Resultate der Mathematik 2022-02, Vol.77 (1), Article 6 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article , we study the eigenvalue problem of the following operator
d
i
v
A
∇
f
=
0
in
M
∂
f
∂
v
=
p
f
on
∂
M
where
M
is a compact Riemannian manifold with compact, connected, oriented boundary
∂
M
,
A
denotes a smooth symmetric, positive definite (1,1)-tensor on
M
. We prove an Reilly-type upper bound for the first non-zero eigenvalue
p
1
of this problem via the higher order anisotropic mean curvatures of the boundary
∂
M
in
R
n
+
1
. Then, we also prove some pinching theorems for
p
1
. In particular, we give some applications of these results to steklov eigenvalue problem. |
---|---|
ISSN: | 1422-6383 1420-9012 |
DOI: | 10.1007/s00025-021-01544-w |