Stable Type Solutions of the Complex Laplacian Operators on Hermitian Manifolds

In this paper, we investigate the rigidity properties of stable type solutions of the complex Laplacian operators on Hermitian manifolds with Gauduchon metric, which has been considered for the Laplace–Beltrami operators on Riemannian manifolds by other authors. We derive some integral inequalities...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Resultate der Mathematik 2021-12, Vol.76 (4), Article 202
1. Verfasser: Wang, Xiongliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate the rigidity properties of stable type solutions of the complex Laplacian operators on Hermitian manifolds with Gauduchon metric, which has been considered for the Laplace–Beltrami operators on Riemannian manifolds by other authors. We derive some integral inequalities involving Chern curvature tensor about stable type solutions and the Liouville type results for the stable type solutions under assuming some curvature signs.
ISSN:1422-6383
1420-9012
DOI:10.1007/s00025-021-01512-4