On Subadditive Functions Bounded Above on a “Large” Set

It is well known that boundedness of a subadditive function need not imply its continuity. Here we prove that each subadditive function f : X → R bounded above on a shift–compact (non–Haar–null, non–Haar–meagre) set is locally bounded at each point of the domain. Our results refer to results from Ku...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Resultate der Mathematik 2020-04, Vol.75 (2), Article 58
Hauptverfasser: Bingham, Nicholas H., Jabłońska, Eliza, Jabłoński, Wojciech, Ostaszewski, Adam J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is well known that boundedness of a subadditive function need not imply its continuity. Here we prove that each subadditive function f : X → R bounded above on a shift–compact (non–Haar–null, non–Haar–meagre) set is locally bounded at each point of the domain. Our results refer to results from Kuczma’s book (An Introduction to the theory of functional equations and inequalities. Cauchy’s equation and Jensen’s inequality, 2nd edn, Birkhäuser Verlag, Basel, 2009, Chapter 16) and papers by Bingham and Ostaszewski [Proc Am Math Soc 136(12):4257–4266, 2008, Aequationes Math 78(3):257–270, 2009, Dissert Math 472:138pp., 2010, Indag Math (N.S.) 29:687–713, 2018, Aequationes Math 93(2):351–369, 2019).
ISSN:1422-6383
1420-9012
DOI:10.1007/s00025-020-01186-4