On (m,∞)-isometries: Examples
An operator T on a Banach space X is said to be an ( m , ∞ ) -isometry, if max 0 ≤ k ≤ m k even ‖ T k x ‖ = max 0 ≤ k ≤ m k odd ‖ T k x ‖ , for all x ∈ X . In this paper, we study unilateral weighted shift operators which are ( m , ∞ ) -isometries for some integers m . In particular, we show that an...
Gespeichert in:
Veröffentlicht in: | Resultate der Mathematik 2019-09, Vol.74 (3), Article 108 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An operator
T
on a Banach space
X
is said to be an
(
m
,
∞
)
-isometry, if
max
0
≤
k
≤
m
k
even
‖
T
k
x
‖
=
max
0
≤
k
≤
m
k
odd
‖
T
k
x
‖
,
for all
x
∈
X
. In this paper, we study unilateral weighted shift operators which are
(
m
,
∞
)
-isometries for some integers
m
. In particular, we show that any power of an
(
m
,
∞
)
-isometry is not necessarily an
(
m
,
∞
)
-isometry. We also study strict
(
3
,
∞
)
-isometries on
R
2
and give an example of a strict
(
2
n
-
1
,
∞
)
-isometry on
C
2
, for any odd integer
n
. |
---|---|
ISSN: | 1422-6383 1420-9012 |
DOI: | 10.1007/s00025-019-1018-7 |