On (m,∞)-isometries: Examples

An operator T on a Banach space X is said to be an ( m , ∞ ) -isometry, if max 0 ≤ k ≤ m k even ‖ T k x ‖ = max 0 ≤ k ≤ m k odd ‖ T k x ‖ , for all x ∈ X . In this paper, we study unilateral weighted shift operators which are ( m , ∞ ) -isometries for some integers m . In particular, we show that an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Resultate der Mathematik 2019-09, Vol.74 (3), Article 108
Hauptverfasser: Bermúdez, Teresa, Zaway, Hajer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An operator T on a Banach space X is said to be an ( m , ∞ ) -isometry, if max 0 ≤ k ≤ m k even ‖ T k x ‖ = max 0 ≤ k ≤ m k odd ‖ T k x ‖ , for all x ∈ X . In this paper, we study unilateral weighted shift operators which are ( m , ∞ ) -isometries for some integers m . In particular, we show that any power of an ( m , ∞ ) -isometry is not necessarily an ( m , ∞ ) -isometry. We also study strict ( 3 , ∞ ) -isometries on R 2 and give an example of a strict ( 2 n - 1 , ∞ ) -isometry on C 2 , for any odd integer n .
ISSN:1422-6383
1420-9012
DOI:10.1007/s00025-019-1018-7