Semi-Inner Products and the Concept of Semi-Polarity
The lack of an inner product structure in Banach spaces yields the motivation to introduce a semi-inner product with a more general axiom system, one missing the requirement for symmetry, unlike the one determining a Hilbert space. We use it on a finite dimensional real Banach space ( X , ‖ · ‖ ) to...
Gespeichert in:
Veröffentlicht in: | Resultate der Mathematik 2017-02, Vol.71 (1-2), p.127-144 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The lack of an inner product structure in Banach spaces yields the motivation to introduce a semi-inner product with a more general axiom system, one missing the requirement for symmetry, unlike the one determining a Hilbert space. We use it on a finite dimensional real Banach space
(
X
,
‖
·
‖
)
to define and investigate three concepts. First, we generalize that of
antinorms
, already defined in Minkowski planes, for even dimensional spaces. Second, we introduce
normality maps
, which in turn leads us to the study of
semi-polarity
, a variant of the notion of polarity, which makes use of the underlying semi-inner product. |
---|---|
ISSN: | 1422-6383 1420-9012 |
DOI: | 10.1007/s00025-015-0510-y |