Semi-Inner Products and the Concept of Semi-Polarity

The lack of an inner product structure in Banach spaces yields the motivation to introduce a semi-inner product with a more general axiom system, one missing the requirement for symmetry, unlike the one determining a Hilbert space. We use it on a finite dimensional real Banach space ( X , ‖ · ‖ ) to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Resultate der Mathematik 2017-02, Vol.71 (1-2), p.127-144
Hauptverfasser: Horváth, Ákos G., Lángi, Zsolt, Spirova, Margarita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The lack of an inner product structure in Banach spaces yields the motivation to introduce a semi-inner product with a more general axiom system, one missing the requirement for symmetry, unlike the one determining a Hilbert space. We use it on a finite dimensional real Banach space ( X , ‖ · ‖ ) to define and investigate three concepts. First, we generalize that of antinorms , already defined in Minkowski planes, for even dimensional spaces. Second, we introduce normality maps , which in turn leads us to the study of semi-polarity , a variant of the notion of polarity, which makes use of the underlying semi-inner product.
ISSN:1422-6383
1420-9012
DOI:10.1007/s00025-015-0510-y