Liouville Property for Solutions of the Linearized Degenerate Thin Film Equation of Fourth Order in a Halfspace

We consider a boundary value problem in a half-space for a linear parabolic equation of fourth order with a degeneration on the boundary of the half-space. The equation under consideration is substantially a linearized thin film equation. We prove that, if the right hand side of the equation and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Resultate der Mathematik 2016-09, Vol.70 (1-2), p.137-161
1. Verfasser: Degtyarev, S. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a boundary value problem in a half-space for a linear parabolic equation of fourth order with a degeneration on the boundary of the half-space. The equation under consideration is substantially a linearized thin film equation. We prove that, if the right hand side of the equation and the boundary condition are polynomials in the tangential variables and time, the same property has any solution of a power growth. It is shown also that the specified property does not apply to the normal variable. As an application, we present a theorem of uniqueness for the problem in the class of functions of power growth.
ISSN:1422-6383
1420-9012
DOI:10.1007/s00025-015-0467-x