Symmetric 2-Structures, a Classification
We classify symmetric 2-structures ( P , G 1 , G 2 , K ) , i.e. chain structures which correspond to sharply 2-transitive permutation sets ( E , Σ) satisfying the condition: “ ( ∗ ) ∀ σ , τ ∈ Σ : σ ∘ τ - 1 ∘ σ ∈ Σ ”. To every chain K ∈ K one can associate a reflection K ~ in K . Then (*) is equivale...
Gespeichert in:
Veröffentlicht in: | Resultate der Mathematik 2014-06, Vol.65 (3-4), p.347-359 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We classify
symmetric 2-structures
(
P
,
G
1
,
G
2
,
K
)
, i.e. chain structures which correspond to sharply 2-transitive permutation sets (
E
, Σ) satisfying the condition: “
(
∗
)
∀
σ
,
τ
∈
Σ
:
σ
∘
τ
-
1
∘
σ
∈
Σ
”. To every chain
K
∈
K
one can associate a reflection
K
~
in
K
. Then (*) is equivalent to “
(
∗
∗
)
∀
K
∈
K
:
K
~
(
K
)
=
K
” and one can define an orthogonality “
⊥
” for chains
K
,
L
∈
K
by “
K
⊥
L
⇔
K
≠
L
∧
K
~
(
L
)
=
L
”. The classification is based on the cardinality of the set of chains which are orthogonal to a chain
K
and passing through a point
p
of
K
. For one of these classes (called
point symmetric 2-structures
) we proof that in each point there is a reflection and that the set of point reflections forms a regular involutory permutation set. |
---|---|
ISSN: | 1422-6383 1420-9012 |
DOI: | 10.1007/s00025-013-0349-z |