Twisted Equivariant Matter

We show how general principles of symmetry in quantum mechanics lead to twisted notions of a group representation. This framework generalizes both the classical threefold way of real/complex/ quaternionic representations as well as a corresponding tenfold way which has appeared in condensed matter a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincaré 2013-12, Vol.14 (8), p.1927-2023
Hauptverfasser: Freed, Daniel S., Moore, Gregory W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show how general principles of symmetry in quantum mechanics lead to twisted notions of a group representation. This framework generalizes both the classical threefold way of real/complex/ quaternionic representations as well as a corresponding tenfold way which has appeared in condensed matter and nuclear physics. We establish a foundation for discussing continuous families of quantum systems. Having done so, topological phases of quantum systems can be defined as deformation classes of continuous families of gapped Hamiltonians. For free particles, there is an additional algebraic structure on the deformation classes leading naturally to notions of twisted equivariant K -theory. In systems with a lattice of translational symmetries, we show that there is a canonical twisting of the equivariant K -theory of the Brillouin torus. We give precise mathematical definitions of two invariants of the topological phases which have played an important role in the study of topological insulators. Twisted equivariant K -theory provides a finer classification of topological insulators than has been previously available.
ISSN:1424-0637
1424-0661
DOI:10.1007/s00023-013-0236-x