Upper Bound for the Bethe–Sommerfeld Threshold and the Spectrum of the Poisson Random Hamiltonian in Two Dimensions
We consider the Schrödinger operator on with a locally square-integrable periodic potential V and give an upper bound for the Bethe–Sommerfeld threshold (the minimal energy above which no spectral gaps occur) with respect to the square-integrable norm of V on a fundamental domain, provided that V is...
Gespeichert in:
Veröffentlicht in: | Annales Henri Poincaré 2013-02, Vol.14 (1), p.37-62 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the Schrödinger operator on
with a locally square-integrable periodic potential
V
and give an upper bound for the Bethe–Sommerfeld threshold (the minimal energy above which no spectral gaps occur) with respect to the square-integrable norm of
V
on a fundamental domain, provided that
V
is small. As an application, we prove the spectrum of the two-dimensional Schrödinger operator with the Poisson type random potential almost surely equals the positive real axis or the whole real axis, according as the negative part of the single-site potential equals zero or not. The latter result completes the missing part of the result by Ando et al. (Ann Henri Poincaré 7:145–160,
2006
). |
---|---|
ISSN: | 1424-0637 1424-0661 |
DOI: | 10.1007/s00023-012-0180-1 |