Upper Bound for the Bethe–Sommerfeld Threshold and the Spectrum of the Poisson Random Hamiltonian in Two Dimensions

We consider the Schrödinger operator on with a locally square-integrable periodic potential V and give an upper bound for the Bethe–Sommerfeld threshold (the minimal energy above which no spectral gaps occur) with respect to the square-integrable norm of V on a fundamental domain, provided that V is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincaré 2013-02, Vol.14 (1), p.37-62
Hauptverfasser: Kaminaga, Masahiro, Mine, Takuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the Schrödinger operator on with a locally square-integrable periodic potential V and give an upper bound for the Bethe–Sommerfeld threshold (the minimal energy above which no spectral gaps occur) with respect to the square-integrable norm of V on a fundamental domain, provided that V is small. As an application, we prove the spectrum of the two-dimensional Schrödinger operator with the Poisson type random potential almost surely equals the positive real axis or the whole real axis, according as the negative part of the single-site potential equals zero or not. The latter result completes the missing part of the result by Ando et al. (Ann Henri Poincaré 7:145–160, 2006 ).
ISSN:1424-0637
1424-0661
DOI:10.1007/s00023-012-0180-1