Non-classical polar unitals in finite Dickson semifield planes
We give three proofs, two intrinsic and one extrinsic, that every Dickson–Ganley unital U ( σ ) , parametrized by a field automorphism σ , is non-classical if σ is not the identity, extending a result of Ganley’s (Math Z 128:34–42, 1972 ); we prove that U ( σ 1 ) is isomorphic to U ( σ 2 ) if and on...
Gespeichert in:
Veröffentlicht in: | Journal of geometry 2013-12, Vol.104 (3), p.469-493 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give three proofs, two intrinsic and one extrinsic, that every Dickson–Ganley unital
U
(
σ
)
, parametrized by a field automorphism
σ
, is non-classical if
σ
is not the identity, extending a result of Ganley’s (Math Z 128:34–42,
1972
); we prove that
U
(
σ
1
)
is isomorphic to
U
(
σ
2
)
if and only if
σ
1
=
σ
2
or
σ
1
=
σ
2
−1
; and we determine the (design) automorphism group of
U
(
σ
)
as the collineation subgroup of the ambient Dickson semifield plane stabilizing the unital. This contains as a special case the corresponding result of O’Nan’s (J Algebra 20:495–511,
1965
) on the classical unital. |
---|---|
ISSN: | 0047-2468 1420-8997 |
DOI: | 10.1007/s00022-013-0174-2 |