An interstice relationship for flowers with four petals
Given three mutually tangent circles with bends (related to the reciprocal of the radius) a , b and c respectively, an important quantity associated with the triple is the value 〈 a , b , c 〉 : = a b + a c + b c . In this note we show in the case when a central circle with bend b 0 is “surrounded” b...
Gespeichert in:
Veröffentlicht in: | Journal of geometry 2013-12, Vol.104 (3), p.421-438 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given three mutually tangent circles with bends (related to the reciprocal of the radius)
a
,
b
and
c
respectively, an important quantity associated with the triple is the value
〈
a
,
b
,
c
〉
:
=
a
b
+
a
c
+
b
c
. In this note we show in the case when a central circle with bend
b
0
is “surrounded” by four circles, i.e., a flower with four petals, with bends
b
1
,
b
2
,
b
3
,
b
4
that either
〈
b
0
,
b
1
,
b
2
〉
+
〈
b
0
,
b
3
,
b
4
〉
=
〈
b
0
,
b
2
,
b
3
〉
+
〈
b
0
,
b
4
,
b
1
〉
or
〈
b
0
,
b
1
,
b
2
〉
=
〈
b
0
,
b
2
,
b
3
〉
+
〈
b
0
,
b
3
,
b
4
〉
+
〈
b
0
,
b
4
,
b
1
〉
(where
〈
b
0
,
b
1
,
b
2
〉
is chosen to be maximal). As an application we give a sufficient condition for the alternating sum of the
〈
a
,
b
,
c
〉
of a packing in standard position to be 0. (A packing is in standard position when we have two circles with bend 0, i.e., parallel lines, and the remaining circles are packed in between.) |
---|---|
ISSN: | 0047-2468 1420-8997 |
DOI: | 10.1007/s00022-013-0173-3 |