Besov Space Regularity Conditions for Weak Solutions of the Navier–Stokes Equations
Consider a bounded domain Ω ⊆ R 3 with smooth boundary, some initial value u 0 ∈ L σ 2 ( Ω ) , and a weak solution u of the Navier–Stokes system in [ 0 , T ) × Ω , 0 < T ≤ ∞ . Our aim is to develop regularity and uniqueness conditions for u which are based on the Besov space B q , s ( Ω ) : = v ∈...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical fluid mechanics 2014-06, Vol.16 (2), p.307-320 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consider a bounded domain
Ω
⊆
R
3
with smooth boundary, some initial value
u
0
∈
L
σ
2
(
Ω
)
, and a weak solution
u
of the Navier–Stokes system in
[
0
,
T
)
×
Ω
,
0
<
T
≤
∞
. Our aim is to develop regularity and uniqueness conditions for
u
which are based on the Besov space
B
q
,
s
(
Ω
)
:
=
v
∈
L
σ
2
(
Ω
)
;
‖
v
‖
B
q
,
s
(
Ω
)
:
=
∫
0
∞
e
-
τ
A
v
q
s
d
τ
1
/
s
<
∞
with
2
<
s
<
∞
,
3
<
q
<
∞
,
2
s
+
3
q
=
1
; here
A
denotes the Stokes operator. This space, introduced by Farwig et al. (Ann. Univ. Ferrara 55:89–110,
2009
and J. Math. Fluid Mech. 14: 529–540,
2012
), is a subspace of the well known Besov space
B
q
,
s
-
2
/
s
(
Ω
)
, see Amann (Nonhomogeneous Navier–Stokes Equations with Integrable Low-Regularity Data. Int. Math. Ser. pp. 1–28. Kluwer/Plenum, New York,
2002
). Our main results on the regularity of
u
exploits a variant of the space
B
q
,
s
(
Ω
)
in which the integral in time has to be considered only on finite intervals (0,
δ
) with
δ
→
0
. Further we discuss several criteria for uniqueness and local right-hand regularity, in particular, if
u
satisfies Serrin’s limit condition
u
∈
L
loc
∞
(
[
0
,
T
)
;
L
σ
3
(
Ω
)
)
. Finally, we obtain a large class of regular weak solutions
u
defined by a smallness condition
‖
u
0
‖
B
q
,
s
(
Ω
)
≤
K
with some constant
K
=
K
(
Ω
,
q
)
>
0
. |
---|---|
ISSN: | 1422-6928 1422-6952 |
DOI: | 10.1007/s00021-013-0154-1 |