On the Second Iterate for Critically Diffusive Active Scalar Equations

We consider an iterative resolution scheme for a class of active scalar equations with a fractional power γ of the Laplacian and focus our attention on the second iterate. In the case of critical diffusivity, we extract information relevant to Well-posedness questions in scale-invariant spaces. Our...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical fluid mechanics 2013-09, Vol.15 (3), p.481-492
Hauptverfasser: Friedlander, Susan, Rusin, Walter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider an iterative resolution scheme for a class of active scalar equations with a fractional power γ of the Laplacian and focus our attention on the second iterate. In the case of critical diffusivity, we extract information relevant to Well-posedness questions in scale-invariant spaces. Our results are Two-fold: we prove continuity of the bilinear operator in ; for equations with an even symbol we show that the -regularity, where q > 2, is in a sense a minimal necessary requirement on the solution.
ISSN:1422-6928
1422-6952
DOI:10.1007/s00021-012-0121-2