On the Second Iterate for Critically Diffusive Active Scalar Equations
We consider an iterative resolution scheme for a class of active scalar equations with a fractional power γ of the Laplacian and focus our attention on the second iterate. In the case of critical diffusivity, we extract information relevant to Well-posedness questions in scale-invariant spaces. Our...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical fluid mechanics 2013-09, Vol.15 (3), p.481-492 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider an iterative resolution scheme for a class of active scalar equations with a fractional power
γ
of the Laplacian and focus our attention on the second iterate. In the case of critical diffusivity, we extract information relevant to Well-posedness questions in scale-invariant spaces. Our results are Two-fold: we prove continuity of the bilinear operator in
; for equations with an even symbol we show that the
-regularity, where
q
> 2, is in a sense a minimal necessary requirement on the solution. |
---|---|
ISSN: | 1422-6928 1422-6952 |
DOI: | 10.1007/s00021-012-0121-2 |