Higher-Order Operators on Networks: Hyperbolic and Parabolic Theory

We study higher-order elliptic operators on one-dimensional ramified structures (networks). We introduce a general variational framework for fourth-order operators that allows us to study features of both hyperbolic and parabolic equations driven by this class of operators. We observe that they exte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integral equations and operator theory 2020-12, Vol.92 (6), Article 50
Hauptverfasser: Gregorio, Federica, Mugnolo, Delio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study higher-order elliptic operators on one-dimensional ramified structures (networks). We introduce a general variational framework for fourth-order operators that allows us to study features of both hyperbolic and parabolic equations driven by this class of operators. We observe that they extend to the higher-order case and discuss well-posedness and conservation of energy of beam equations, along with regularizing properties of polyharmonic heat kernels. A noteworthy finding is the discovery of a new class of well-posed evolution equations with Wentzell-type boundary conditions.
ISSN:0378-620X
1420-8989
DOI:10.1007/s00020-020-02610-8