Localized Boundary-Domain Singular Integral Equations Based on Harmonic Parametrix for Divergence-Form Elliptic PDEs with Variable Matrix Coefficients
Employing the localized integral potentials associated with the Laplace operator, the Dirichlet, Neumann and Robin boundary value problems (BVPs) for general variable-coefficient divergence-form second-order elliptic partial differential equations are reduced to some systems of localized boundary-do...
Gespeichert in:
Veröffentlicht in: | Integral equations and operator theory 2013-08, Vol.76 (4), p.509-547 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Employing the localized integral potentials associated with the Laplace operator, the Dirichlet, Neumann and Robin boundary value problems (BVPs) for general variable-coefficient divergence-form second-order elliptic partial differential equations are reduced to some systems of localized boundary-domain singular integral equations. Equivalence of the integral equations systems to the original BVPs is proved. It is established that the corresponding localized boundary-domain integral operators belong to the Boutet de Monvel algebra of pseudo-differential operators. Applying the Vishik–Eskin theory based on the factorization method, the Fredholm properties and invertibility of the operators are proved in appropriate Sobolev spaces. |
---|---|
ISSN: | 0378-620X 1420-8989 |
DOI: | 10.1007/s00020-013-2054-4 |