Localized Boundary-Domain Singular Integral Equations Based on Harmonic Parametrix for Divergence-Form Elliptic PDEs with Variable Matrix Coefficients

Employing the localized integral potentials associated with the Laplace operator, the Dirichlet, Neumann and Robin boundary value problems (BVPs) for general variable-coefficient divergence-form second-order elliptic partial differential equations are reduced to some systems of localized boundary-do...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integral equations and operator theory 2013-08, Vol.76 (4), p.509-547
Hauptverfasser: Chkadua, O., Mikhailov, S. E., Natroshvili, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Employing the localized integral potentials associated with the Laplace operator, the Dirichlet, Neumann and Robin boundary value problems (BVPs) for general variable-coefficient divergence-form second-order elliptic partial differential equations are reduced to some systems of localized boundary-domain singular integral equations. Equivalence of the integral equations systems to the original BVPs is proved. It is established that the corresponding localized boundary-domain integral operators belong to the Boutet de Monvel algebra of pseudo-differential operators. Applying the Vishik–Eskin theory based on the factorization method, the Fredholm properties and invertibility of the operators are proved in appropriate Sobolev spaces.
ISSN:0378-620X
1420-8989
DOI:10.1007/s00020-013-2054-4