Skew-Self-Adjoint Dirac System with a Rectangular Matrix Potential: Weyl Theory, Direct and Inverse Problems
A non-classical Weyl theory is developed for skew-self-adjoint Dirac systems with rectangular matrix potentials. The notion of the Weyl function is introduced and direct and inverse problems are solved. A Borg–Marchenko type uniqueness result and the evolution of the Weyl function for the correspond...
Gespeichert in:
Veröffentlicht in: | Integral equations and operator theory 2012-10, Vol.74 (2), p.163-187 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A non-classical Weyl theory is developed for skew-self-adjoint Dirac systems with rectangular matrix potentials. The notion of the Weyl function is introduced and direct and inverse problems are solved. A Borg–Marchenko type uniqueness result and the evolution of the Weyl function for the corresponding focusing nonlinear Schrödinger equation are also derived. |
---|---|
ISSN: | 0378-620X 1420-8989 |
DOI: | 10.1007/s00020-012-1997-1 |