Contractivity of Projections Commuting with Inner Derivations on JBW-triples
It is shown that if P is a weak*-continuous projection on a JBW*-triple A with predual A * , such that the range PA of P is an atomic subtriple with finite-dimensional Cartan-factors, and P is the sum of coordinate projections with respect to a standard grid of PA , then P is contractive if and only...
Gespeichert in:
Veröffentlicht in: | Integral equations and operator theory 2011-05, Vol.70 (1), p.101-123 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that if
P
is a weak*-continuous projection on a JBW*-triple
A
with predual
A
*
, such that the range
PA
of
P
is an atomic subtriple with finite-dimensional Cartan-factors, and
P
is the sum of coordinate projections with respect to a standard grid of
PA
, then
P
is contractive if and only if it commutes with all inner derivations of
PA
. This provides characterizations of 1-complemented elements in a large class of subspaces of
A
*
in terms of commutation relations. |
---|---|
ISSN: | 0378-620X 1420-8989 |
DOI: | 10.1007/s00020-010-1860-1 |