Bi-Parametric Potentials, Relevant Function Spaces and Wavelet-Like Transforms
. We introduce new potential type operators , (α > 0, β > 0), and bi-parametric scale of function spaces associated with J α β . These potentials generalize the classical Bessel potentials (for β = 2), and Flett potentials (for β = 1). A characterization of the spaces is given with the aid of...
Gespeichert in:
Veröffentlicht in: | Integral equations and operator theory 2009-10, Vol.65 (2), p.151-167 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | .
We introduce new potential type operators
, (α > 0, β > 0), and bi-parametric scale of function spaces
associated with
J
α
β
. These potentials generalize the classical Bessel potentials (for β = 2), and Flett potentials (for β = 1). A characterization of the spaces
is given with the aid of a special wavelet–like transform associated with a β-semigroup, which generalizes the well-known Gauss-Weierstrass semigroup (for β = 2) and the Poisson one (for β = 1). |
---|---|
ISSN: | 0378-620X 1420-8989 |
DOI: | 10.1007/s00020-009-1707-9 |