Mixed Boundary Value Problems of Thermopiezoelectricity for Solids with Interior Cracks
. We investigate asymptotic properties of solutions to mixed boundary value problems of thermopiezoelectricity (thermoelectroelasticity) for homogeneous anisotropic solids with interior cracks. Using the potential methods and theory of pseudodifferential equations on manifolds with boundary we prove...
Gespeichert in:
Veröffentlicht in: | Integral equations and operator theory 2009-08, Vol.64 (4), p.495-537 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | .
We investigate asymptotic properties of solutions to mixed boundary value problems of thermopiezoelectricity (thermoelectroelasticity) for homogeneous anisotropic solids with interior cracks. Using the potential methods and theory of pseudodifferential equations on manifolds with boundary we prove the existence and uniqueness of solutions. The singularities and asymptotic behaviour of the mechanical, thermal and electric fields are analysed near the crack edges and near the curves, where the types of boundary conditions change. In particular, for some important classes of anisotropic media we derive explicit expressions for the corresponding stress singularity exponents and demonstrate their dependence on the material parameters. The questions related to the so called oscillating singularities are treated in detail as well. |
---|---|
ISSN: | 0378-620X 1420-8989 |
DOI: | 10.1007/s00020-009-1694-x |