Aluthge Transforms of Complex Symmetric Operators

. If denotes the polar decomposition of a bounded linear operator T , then the Aluthge transform of T is defined to be the operator . In this note we study the relationship between the Aluthge transform and the class of complex symmetric operators ( T is complex symmetric if there exists a conjugate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integral equations and operator theory 2008-03, Vol.60 (3), p.357-367
1. Verfasser: Garcia, Stephan Ramon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:. If denotes the polar decomposition of a bounded linear operator T , then the Aluthge transform of T is defined to be the operator . In this note we study the relationship between the Aluthge transform and the class of complex symmetric operators ( T is complex symmetric if there exists a conjugate-linear, isometric involution so that T = CT * C ). In this note we prove that: (1) the Aluthge transform of a complex symmetric operator is complex symmetric, (2) if T is complex symmetric, then and are unitarily equivalent, (3) if T is complex symmetric, then if and only if T is normal, (4) if and only if T 2 = 0, and (5) every operator which satisfies T 2 = 0 is necessarily complex symmetric.
ISSN:0378-620X
1420-8989
DOI:10.1007/s00020-008-1564-y