Aluthge Transforms of Complex Symmetric Operators
. If denotes the polar decomposition of a bounded linear operator T , then the Aluthge transform of T is defined to be the operator . In this note we study the relationship between the Aluthge transform and the class of complex symmetric operators ( T is complex symmetric if there exists a conjugate...
Gespeichert in:
Veröffentlicht in: | Integral equations and operator theory 2008-03, Vol.60 (3), p.357-367 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | .
If
denotes the polar decomposition of a bounded linear operator
T
, then the
Aluthge transform
of
T
is defined to be the operator
. In this note we study the relationship between the Aluthge transform and the class of complex symmetric operators (
T
is
complex symmetric
if there exists a conjugate-linear, isometric involution
so that
T
=
CT
*
C
). In this note we prove that: (1) the Aluthge transform of a complex symmetric operator is complex symmetric, (2) if
T
is complex symmetric, then
and
are unitarily equivalent, (3) if
T
is complex symmetric, then
if and only if
T
is normal, (4)
if and only if
T
2
= 0, and (5) every operator which satisfies
T
2
= 0 is necessarily complex symmetric. |
---|---|
ISSN: | 0378-620X 1420-8989 |
DOI: | 10.1007/s00020-008-1564-y |