Linear topological invariants for kernels of differential operators by shifted fundamental solutions
We characterize the condition $$(\Omega )$$ ( Ω ) for smooth kernels of partial differential operators in terms of the existence of shifted fundamental solutions satisfying certain properties. The conditions $$(P\Omega )$$ ( P Ω ) and $$(P\overline{\overline{\Omega }})$$ ( P Ω ¯ ¯ ) for distribution...
Gespeichert in:
Veröffentlicht in: | Archiv der Mathematik 2024-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We characterize the condition
$$(\Omega )$$
(
Ω
)
for smooth kernels of partial differential operators in terms of the existence of shifted fundamental solutions satisfying certain properties. The conditions
$$(P\Omega )$$
(
P
Ω
)
and
$$(P\overline{\overline{\Omega }})$$
(
P
Ω
¯
¯
)
for distributional kernels are characterized in a similar way. By lifting theorems for Fréchet spaces and (PLS)-spaces, this provides characterizations of the problem of parameter dependence for smooth and distributional solutions of differential equations by shifted fundamental solutions. As an application, we give a new proof of the fact that the space
$$\{ f \in {\mathscr {E}}(X) \, | \, P(D)f = 0\}$$
{
f
∈
E
(
X
)
|
P
(
D
)
f
=
0
}
satisfies
$$(\Omega )$$
(
Ω
)
for any differential operator
P
(
D
) and any open convex set
$$X \subseteq {\mathbb {R}}^d$$
X
⊆
R
d
. |
---|---|
ISSN: | 0003-889X 1420-8938 |
DOI: | 10.1007/s00013-024-02070-1 |