Bounds on the higher degree Erdős–Ginzburg–Ziv constants over $${\mathbb {F}}_q^n

The classical Erdős–Ginzburg–Ziv constant of a group G denotes the smallest positive integer $$\ell $$ ℓ such that any sequence S of length at least $$\ell $$ ℓ contains a zero-sum subsequence of length $$\exp (G).$$ exp ( G ) . In the recent paper (Integers 22: Paper No. A102, 17 pp., 2022), Caro a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archiv der Mathematik 2024-01, Vol.122 (1), p.17-29
Hauptverfasser: Costa, Simone, Della Fiore, Stefano
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The classical Erdős–Ginzburg–Ziv constant of a group G denotes the smallest positive integer $$\ell $$ ℓ such that any sequence S of length at least $$\ell $$ ℓ contains a zero-sum subsequence of length $$\exp (G).$$ exp ( G ) . In the recent paper (Integers 22: Paper No. A102, 17 pp., 2022), Caro and Schmitt generalized this concept, using the m -th degree symmetric polynomial $$e_m(S)$$ e m ( S ) instead of the sum of the elements of S and considering subsequences of a given length t . In particular, they defined the higher degree Erdős–Ginzburg–Ziv constants EGZ ( t ,  R ,  m ) of a finite commutative ring R and presented several lower and upper bounds to these constants. This paper aims to provide lower and upper bounds for EGZ ( t ,  R ,  m ) in case $$R={\mathbb {F}}_q^{n}.$$ R = F q n . The lower bounds here presented have been obtained, respectively, using the Lovász local lemma and the expurgation method and, for sufficiently large n ,  they beat the lower bound provided by Caro and Schmitt for the same kind of rings. Finally, we prove closed form upper bounds derived from the Ellenberg–Gijswijt and Sauermann results for the cap-set problem assuming that $$q = p^k,$$ q = p k , $$t = p,$$ t = p , and $$m=p-1.$$ m = p - 1 . Moreover, using the slice rank method, we derive a convex optimization problem that provides the best bounds for $$q = 3^k,$$ q = 3 k , $$t = 3,$$ t = 3 , $$m=2,$$ m = 2 , and $$k=2, 3,4,5.$$ k = 2 , 3 , 4 , 5 .
ISSN:0003-889X
1420-8938
DOI:10.1007/s00013-023-01916-4