Asymptotic behavior of the p-torsion functions as p goes to 1
Let Ω be a Lipschitz bounded domain of R N , N ≥ 2 , and let u p ∈ W 0 1 , p ( Ω ) denote the p -torsion function of Ω , p > 1. It is observed that the value 1 for the Cheeger constant h ( Ω ) is threshold with respect to the asymptotic behavior of u p , as p → 1 + , in the following sense: when...
Gespeichert in:
Veröffentlicht in: | Archiv der Mathematik 2016-07, Vol.107 (1), p.63-72 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
Ω
be a Lipschitz bounded domain of
R
N
,
N
≥
2
, and let
u
p
∈
W
0
1
,
p
(
Ω
)
denote the
p
-torsion function of
Ω
,
p
> 1. It is observed that the value 1 for the Cheeger constant
h
(
Ω
)
is threshold with respect to the asymptotic behavior of
u
p
, as
p
→
1
+
, in the following sense: when
h
(
Ω
)
>
1
, one has
lim
p
→
1
+
u
p
L
∞
(
Ω
)
=
0
, and when
h
(
Ω
)
<
1
, one has
lim
p
→
1
+
u
p
L
∞
(
Ω
)
=
∞
. In the case
h
(
Ω
)
=
1
, it is proved that
lim sup
p
→
1
+
u
p
L
∞
(
Ω
)
<
∞
. For a radial annulus
Ω
a
,
b
, with inner radius
a
and outer radius
b
, it is proved that
lim
p
→
1
+
u
p
L
∞
(
Ω
a
,
b
)
=
0
when
h
(
Ω
a
,
b
)
=
1
. |
---|---|
ISSN: | 0003-889X 1420-8938 |
DOI: | 10.1007/s00013-016-0922-2 |