Extremal problems on the class of convex functions of order −1/2
Lawrence Zalcman’s conjecture states that if f ( z ) = z + ∑ n = 2 ∞ a n z n is analytic and univalent in the unit disk | z | < 1 , then | a n 2 - a 2 n - 1 | ≤ ( n - 1 ) 2 , for each n ≥ 2 , with equality only for the Koebe function k ( z ) = z / ( 1 - z ) 2 and its rotations. This conjecture re...
Gespeichert in:
Veröffentlicht in: | Archiv der Mathematik 2014-11, Vol.103 (6), p.461-471 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lawrence Zalcman’s conjecture states that if
f
(
z
)
=
z
+
∑
n
=
2
∞
a
n
z
n
is analytic and univalent in the unit disk
|
z
|
<
1
, then
|
a
n
2
-
a
2
n
-
1
|
≤
(
n
-
1
)
2
,
for each
n
≥
2
, with equality only for the Koebe function
k
(
z
)
=
z
/
(
1
-
z
)
2
and its rotations. This conjecture remains open although it has been verified for a few geometric subclasses of the class of univalent analytic functions. In this paper, we consider this problem for the family of normalized functions
f
analytic and univalent in the unit disk |
z
| < 1 satisfying the condition
Re
1
+
z
f
′
′
(
z
)
f
′
(
z
)
>
-
1
2
for
|
z
|
<
1
.
Functions satisfying this condition are known to be convex in some direction (and hence close-to-convex and univalent) in |
z
| |
---|---|
ISSN: | 0003-889X 1420-8938 |
DOI: | 10.1007/s00013-014-0705-6 |