2-Coverings for exceptional and sporadic simple groups
In this paper we prove that if G is a finite exceptional simple group of Lie type, then G admits a 2-covering if, and only if, it is one of the following groups: G 2 ( 2 a ) , F 4 ( 3 a ) , G 2 ( 2 ) ′ , 2 G 2 ( 3 ) ′ , 2 F 4 ( 2 ) ′ . Furthermore, if G is a finite sporadic simple group, then G admi...
Gespeichert in:
Veröffentlicht in: | Archiv der Mathematik 2013-09, Vol.101 (3), p.201-206 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we prove that if
G
is a finite exceptional simple group of Lie type, then
G
admits a 2-covering if, and only if, it is one of the following groups:
G
2
(
2
a
)
,
F
4
(
3
a
)
,
G
2
(
2
)
′
,
2
G
2
(
3
)
′
,
2
F
4
(
2
)
′
. Furthermore, if
G
is a finite sporadic simple group, then
G
admits a 2-covering if, and only if,
G
= M
11
. |
---|---|
ISSN: | 0003-889X 1420-8938 |
DOI: | 10.1007/s00013-013-0562-8 |