Automorphisms of prime order of smooth cubic n-folds
In this paper we give an effective criterion as to when a prime number p is the order of an automorphism of a smooth cubic hypersurface of , for a fixed n ≥ 2. We also provide a computational method to classify all such hypersurfaces that admit an automorphism of prime order p . In particular, we sh...
Gespeichert in:
Veröffentlicht in: | Archiv der Mathematik 2011-07, Vol.97 (1), p.25-37 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we give an effective criterion as to when a prime number
p
is the order of an automorphism of a smooth cubic hypersurface of
, for a fixed
n
≥ 2. We also provide a computational method to classify all such hypersurfaces that admit an automorphism of prime order
p
. In particular, we show that
p
2
n
is isomorphic to the Klein
n
-fold. We apply our method to compute exhaustive lists of automorphism of prime order of smooth cubic threefolds and fourfolds. Finally, we provide an application to the moduli space of principally polarized abelian varieties. |
---|---|
ISSN: | 0003-889X 1420-8938 |
DOI: | 10.1007/s00013-011-0247-0 |