Minimal subsystems of affine dynamics on local fields

We describe the dynamics of an arbitrary affine dynamical system on a local field by exhibiting all its minimal subsystems. In the special case of the field of p -adic numbers, for any non-trivial affine dynamical system, we prove that the field is decomposed into a countable number of invariant bal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archiv der Mathematik 2011-05, Vol.96 (5), p.423-434
Hauptverfasser: Fan, Ai-Hua, Fares, Youssef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe the dynamics of an arbitrary affine dynamical system on a local field by exhibiting all its minimal subsystems. In the special case of the field of p -adic numbers, for any non-trivial affine dynamical system, we prove that the field is decomposed into a countable number of invariant balls or spheres each of which consists of a finite number of minimal subsets. Consequently, we give a complete classification of topological conjugacy for non-trivial affine dynamics on . For each given prime p , there is a finite number of conjugacy classes.
ISSN:0003-889X
1420-8938
DOI:10.1007/s00013-011-0245-2