Minimal subsystems of affine dynamics on local fields
We describe the dynamics of an arbitrary affine dynamical system on a local field by exhibiting all its minimal subsystems. In the special case of the field of p -adic numbers, for any non-trivial affine dynamical system, we prove that the field is decomposed into a countable number of invariant bal...
Gespeichert in:
Veröffentlicht in: | Archiv der Mathematik 2011-05, Vol.96 (5), p.423-434 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe the dynamics of an arbitrary affine dynamical system on a local field by exhibiting all its minimal subsystems. In the special case of the field
of
p
-adic numbers, for any non-trivial affine dynamical system, we prove that the field
is decomposed into a countable number of invariant balls or spheres each of which consists of a finite number of minimal subsets. Consequently, we give a complete classification of topological conjugacy for non-trivial affine dynamics on
. For each given prime
p
, there is a finite number of conjugacy classes. |
---|---|
ISSN: | 0003-889X 1420-8938 |
DOI: | 10.1007/s00013-011-0245-2 |