The complexity of the Specht modules corresponding to hook partitions
We show that the complexity of the Specht module corresponding to any hook partition is the p -weight of the partition. We calculate the variety and the complexity of the signed permutation modules. Let E s be a representative of the conjugacy class containing an elementary abelian p -subgroup of a...
Gespeichert in:
Veröffentlicht in: | Archiv der Mathematik 2009-07, Vol.93 (1), p.11-22 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the complexity of the Specht module corresponding to any hook partition is the
p
-weight of the partition. We calculate the variety and the complexity of the signed permutation modules. Let
E
s
be a representative of the conjugacy class containing an elementary abelian
p
-subgroup of a symmetric group generated by
s
disjoint
p
-cycles. We give formulae for the generic Jordan types of signed permutation modules restricted to
E
s
and of Specht modules corresponding to hook partitions
μ
restricted to
E
s
where
s
is the
p
-weight of
μ
. |
---|---|
ISSN: | 0003-889X 1420-8938 |
DOI: | 10.1007/s00013-009-0011-x |