Contracting endomorphisms and Gorenstein modules
. A finite module M over a noetherian local ring R is said to be Gorenstein if Ext i ( k, M ) = 0 for all i ≠ dim R . An endomorphism φ: R → R of rings is called contracting if for some i ≥ 1. Letting φ R denote the R -module R with action induced by φ, we prove: A finite R -module M is Gorenstein...
Gespeichert in:
Veröffentlicht in: | Archiv der Mathematik 2009, Vol.92 (1), p.26-34 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | .
A finite module
M
over a noetherian local ring
R
is said to be Gorenstein if Ext
i
(
k, M
) = 0 for all
i
≠ dim
R
. An endomorphism φ:
R
→
R
of rings is called contracting if
for some
i
≥ 1. Letting
φ
R
denote the
R
-module
R
with action induced by φ, we prove: A finite
R
-module M is Gorenstein if and only if Hom
R
(
φ
R, M) ≅ M and Ext
i
R
(
φ
R, M) = 0 for 1 ≤
i
≤ depth
R
. |
---|---|
ISSN: | 0003-889X 1420-8938 |
DOI: | 10.1007/s00013-008-2681-1 |