Contracting endomorphisms and Gorenstein modules

. A finite module M over a noetherian local ring R is said to be Gorenstein if Ext i ( k, M ) = 0 for all i ≠ dim R . An endomorphism φ: R → R of rings is called contracting if for some i  ≥ 1. Letting φ R denote the R -module R with action induced by φ, we prove: A finite R -module M is Gorenstein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archiv der Mathematik 2009, Vol.92 (1), p.26-34
1. Verfasser: Rahmati, Hamidreza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:. A finite module M over a noetherian local ring R is said to be Gorenstein if Ext i ( k, M ) = 0 for all i ≠ dim R . An endomorphism φ: R → R of rings is called contracting if for some i  ≥ 1. Letting φ R denote the R -module R with action induced by φ, we prove: A finite R -module M is Gorenstein if and only if Hom R ( φ R, M) ≅ M and Ext i R ( φ R, M) = 0 for 1 ≤  i  ≤ depth R .
ISSN:0003-889X
1420-8938
DOI:10.1007/s00013-008-2681-1