Equivalent proportionally modular Diophantine inequalities
. We study Diophantine inequalities of the form ax mod b ≤ cx . In particular, we prove that there exists a positive integer such that for every integer n ≥ N there exist a′ , c′ (positive integers dependent of n ) such that a′ x mod n ≤ c′ x has the same solutions as the above inequality....
Gespeichert in:
Veröffentlicht in: | Archiv der Mathematik 2008, Vol.90 (1), p.24-30 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | .
We study Diophantine inequalities of the form
ax
mod
b
≤
cx
. In particular, we prove that there exists a positive integer
such that for every integer
n
≥
N
there exist
a′
,
c′
(positive integers dependent of
n
) such that
a′
x
mod
n
≤
c′
x
has the same solutions as the above inequality. |
---|---|
ISSN: | 0003-889X 1420-8938 |
DOI: | 10.1007/s00013-007-2379-9 |