The number of slim rectangular lattices

Slim rectangular lattices are special planar semimodular lattices introduced by G. Grätzer and E. Knapp in 2009 . They are finite semimodular lattices L such that the ordered set Ji L of join-irreducible elements of L is the cardinal sum of two nontrivial chains. After describing these lattices of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra universalis 2016-02, Vol.75 (1), p.33-50
Hauptverfasser: Czédli, Gábor, Dékány, Tamás, Gyenizse, Gergő, Kulin, Júlia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Slim rectangular lattices are special planar semimodular lattices introduced by G. Grätzer and E. Knapp in 2009 . They are finite semimodular lattices L such that the ordered set Ji L of join-irreducible elements of L is the cardinal sum of two nontrivial chains. After describing these lattices of a given length n by permutations, we determine their number, |SRectL( n )|. Besides giving recursive formulas, which are effective up to about n = 1000, we also prove that |SRectL( n )| is asymptotically ( n - 2)! · e 2 / 2 . Similar results for patch lattices, which are special rectangular lattices introduced by G. Czédli and E. T. Schmidt in 2013, and for slim rectangular lattice diagrams are also given.
ISSN:0002-5240
1420-8911
DOI:10.1007/s00012-015-0363-y