The number of slim rectangular lattices
Slim rectangular lattices are special planar semimodular lattices introduced by G. Grätzer and E. Knapp in 2009 . They are finite semimodular lattices L such that the ordered set Ji L of join-irreducible elements of L is the cardinal sum of two nontrivial chains. After describing these lattices of a...
Gespeichert in:
Veröffentlicht in: | Algebra universalis 2016-02, Vol.75 (1), p.33-50 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Slim rectangular lattices are special planar semimodular lattices introduced by G. Grätzer and E. Knapp in
2009
. They are finite semimodular lattices
L
such that the ordered set Ji
L
of join-irreducible elements of
L
is the cardinal sum of two nontrivial chains. After describing these lattices of a given length
n
by permutations, we determine their number, |SRectL(
n
)|. Besides giving recursive formulas, which are effective up to about
n
= 1000, we also prove that |SRectL(
n
)| is asymptotically (
n
- 2)! ·
e
2
/
2
. Similar results for patch lattices, which are special rectangular lattices introduced by G. Czédli and E. T. Schmidt in 2013, and for slim rectangular lattice diagrams are also given. |
---|---|
ISSN: | 0002-5240 1420-8911 |
DOI: | 10.1007/s00012-015-0363-y |