Funayama’s theorem revisited

Funayama’s theorem states that there is an embedding e of a lattice L into a complete Boolean algebra B such that e preserves all existing joins and meets in L iff L satisfies the join infinite distributive law (JID) and the meet infinite distributive law (MID). More generally, there is a lattice em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra universalis 2013-11, Vol.70 (3), p.271-286
Hauptverfasser: Bezhanishvili, Guram, Gabelaia, David, Jibladze, Mamuka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Funayama’s theorem states that there is an embedding e of a lattice L into a complete Boolean algebra B such that e preserves all existing joins and meets in L iff L satisfies the join infinite distributive law (JID) and the meet infinite distributive law (MID). More generally, there is a lattice embedding e : L → B preserving all existing joins in L iff L satisfies (JID), and there is a lattice embedding e : L → B preserving all existing meets in L iff L satisfies (MID). Funayama’s original proof is quite involved. There are two more accessible proofs in case L is complete. One was given by Grätzer by means of free Boolean extensions and MacNeille completions, and the other by Johnstone by means of nuclei and Booleanization. We show that Grätzer’s proof has an obvious generalization to the non-complete case, and that in the complete case the complete Boolean algebras produced by Grätzer and Johnstone are isomorphic. We prove that in the non-complete case, the class of lattices satisfying (JID) properly contains the class of Heyting algebras, and we characterize lattices satisfying (JID) and (MID) by means of their Priestley duals. Utilizing duality theory, we give alternative proofs of Funayama’s theorem and of the isomorphism between the complete Boolean algebras produced by Grätzer and Johnstone. We also show that unlike Grätzer’s proof, there is no obvious way to generalize Johnstone’s proof to the non-complete case.
ISSN:0002-5240
1420-8911
DOI:10.1007/s00012-013-0247-y