Every effect algebra can be made into a total algebra
We prove that every effect algebra ( E ,+, 0, 1) can easily be made into a total algebra ( E ,⊕, ¬, 0) of type (2, 1, 0) in such a way that two elements are compatible in ( E ,+, 0, 1) if and only if they commute in ( E ,⊕, ¬, 0).
Gespeichert in:
Veröffentlicht in: | Algebra universalis 2009-11, Vol.61 (2), p.139-150 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that every effect algebra (
E
,+, 0, 1) can easily be made into a total algebra (
E
,⊕, ¬, 0) of type (2, 1, 0) in such a way that two elements are compatible in (
E
,+, 0, 1) if and only if they commute in (
E
,⊕, ¬, 0). |
---|---|
ISSN: | 0002-5240 1420-8911 |
DOI: | 10.1007/s00012-009-0010-6 |