Finite Groups All of Whose Subgroups are $$\mathbb {P}$$-Subnormal or $${{\,\textrm{TI}\,}}$$-Subgroups
Let $$\mathbb {P}$$ P be the set of all prime numbers. A subgroup H of a finite group G is said to be $$\mathbb {P}$$ P - subnormal in G if there exists a chain of subgroups $$\begin{aligned} H = H_0 \subseteq H_1 \subseteq \cdots \subseteq H_{n-1} \subseteq H_n = G \end{aligned}$$ H = H 0 ⊆ H 1 ⊆ ⋯...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2024-03, Vol.21 (2), Article 68 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$$\mathbb {P}$$
P
be the set of all prime numbers. A subgroup
H
of a finite group
G
is said to be
$$\mathbb {P}$$
P
-
subnormal
in
G
if there exists a chain of subgroups
$$\begin{aligned} H = H_0 \subseteq H_1 \subseteq \cdots \subseteq H_{n-1} \subseteq H_n = G \end{aligned}$$
H
=
H
0
⊆
H
1
⊆
⋯
⊆
H
n
-
1
⊆
H
n
=
G
such that either
$$H_{i-1}$$
H
i
-
1
is normal in
$$H_i$$
H
i
or
$$|H_i{:}\, H_{i-1}|$$
|
H
i
:
H
i
-
1
|
is a prime number for every
$$i = 1, 2, \ldots , n$$
i
=
1
,
2
,
…
,
n
. A subgroup
H
of
G
is called a
$${{\,\textrm{TI}\,}}$$
TI
-
subgroup
if every pair of distinct conjugates of
H
has trivial intersection. The aim of this paper is to give a complete description of all finite groups in which every non-
$$\mathbb {P}$$
P
-subnormal subgroup is a
$${{\,\textrm{TI}\,}}$$
TI
-subgroup. |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-024-02612-5 |